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Products of Prime Powers 
in Binary Recurrence Sequences 

Part I: The Hyperbolic Case, with an Application to 
the Generalized Ramanujan-Nagell Equation 

By A. Petho and B. M. M. de Weger 

Abstract. We show how the Gelfond-Baker theory and diophantine approximation techniques 
can be applied to solve explicitly the diophantine equation G, = wp" ... p', (where 
(G,, }I='o is a binary recurrence sequence with positive discriminant), for arbitrary values of 
the parameters. We apply this to the equation x2 + k = ... ps', which is a generalization 
of the Ramanujan-Nagell equation x2 + 7 = 2Z. We present algorithms to reduce upper 
bounds for the solutions of these equations. The algorithms are easy to translate into 
computer programs. We present an example which shows that in practice the method works 
well. 

1. Introduction. The Gelfond-Baker method is one of the most useful tools in the 
theory of diophantine equations. It has been used to prove effectively computable 
upper bounds for the solutions of many diophantine problems (cf. Baker [1], Shorey 
and Tijdeman [17]). However, the derived upper bounds are so large that in many 
cases it is hopeless to compute all solutions, even with the fastest present-day 
computers. It seems likely that refinements of the Gelfond-Baker method will not be 
able to change this situation essentially in the near future. 

In those cases where this method has been applied successfully to find all 
solutions of a certain equation, this has been achieved by reducing the upper bounds 
considerably, using diophantine approximation techniques (cf. Stroeker and Tijde- 
man [19]), or by making use of special properties of the diophantine problem (cf. 
Petho [12], [13]). These reduced bounds are in practice always small enough to admit 
enumeration of the remaining possibilities. 

In this paper we present such a reduction algorithm for the following problem. Let 
A, B, Go, G1 be integers, and let the recurrence sequence { GQ }X=0 be defined by 

Gn+1 = AGn -BGn-, (n = 19 2, . . . ) . 

Put A = 2 - 4B, and assume that A > 0, and that the sequence is not degenerate. 
Let w be a nonzero integer, and let Pl, ... p,1 be distinct prime numbers. We study 
the diophantine equation 
(1.1) G =wpMI ... pt' 

Received October 25, 1985. 
1980 Mathematics Subject Classification (1985 Revision). Primary 11B37, 11D61, 11J87, 11Y50. 

?1986 American Mathematical Society 

0025-5718/86 $1.00 + $.25 per page 

713 



714 A. PETHO AND B. M. M. DE WEGER 

in nonnegative integers n, ml,. .., mi. It was shown by Mahler [9] that (1.1) has only 
finitely many solutions, and Schinzel [16] has given an effectively computable upper 
bound for the solutions. 

Mignotte [11] indicated how (1.1) with t = 1 can in some instances be solved by 
congruence techniques. It is, however, not clear that his method will work for any 
equation (1.1) with t = 1. Moreover, his method seems not to be generalizable for 
t > 1. Petho [14] has given a reduction algorithm, based on the Gelfond-Baker 
method, to treat (1.1) in the case w = t = 1. 

Our reduction algorithm is based on a simple case of p-adic diophantine ap- 
proximation. We shall give explicit upper bounds for the solutions of (1.1) which are 
small enough to admit the practical application of the reduction algorithm, if the 
parameters of the equation are not too large. 

Petho [14] pointed out that essentially better upper bounds hold for all but 
possibly one solution. The reduction algorithm is of course independent of the 
theoretical upper bounds: it can be used to reduce any upper bound. It also works 
well for rather small bounds. 

The generalized Ramanujan-Nagell equation 

(1.2) x2 + k =pzl ..p. pz 

(k a fixed integer, p1, . ., p1 fixed primes) in nonnegative integers x, zl,..., z1, can 
be reduced to a finite number of equations of type (1.1). Equation (1.2) with t = 1 
has a long history (cf. Hasse [5] and Beukers [2]) and interesting applications in 
coding theory (cf. Bremner et al. [3], MacWilliams and Sloane [8], Tzanakis and 
Wolfskill [21], [22]). Examples of Eq. (1.2) have been solved by the Gelfond-Baker 
method by D. C. Hunt and A. J. van der Poorten in an unpublished paper. They 
used complex, not p-adic linear forms in logarithms. As far as we know, none of the 
proposed methods to treat (1.2) gives rise to an algorithm which works for arbitrary 
values of k and pi, whereas Tzanakis' elementary method [20] seems to be the only 
one that can be generalized to t > 1. Our method has both properties. Evertse [4] has 
proved that the number of solutions of (1.2) does not exceed 3 x 74t?6. 

In Section 2 we give the necessary background on p-adic numbers and logarithms, 
and on linear binary recurrence sequences. In Section 3 we apply a theorem of 
Schinzel to find upper bounds for the solutions of (1.1). This result holds for positive 
A as well as for negative, whereas in the remaining sections we restrict ourselves to 
positive A. Section 4 includes the reduction algorithm and gives a worked-out 
example. In Section 5 we study (1.2). As an example we determine all integers x such 
that X2 + 7 has no prime factors larger than 20. Finally, we note that our method 
can be applied to a somewhat more general type of quadratic/exponential diophan- 
tine equation. 

In the second part of this paper ([23]), the second-named author intends to study 
Eq. (1.1) for negative discriminant. 

2. Preliminaries. 
2A. p-Adic Numbers and Logarithms. For the convenience of the reader we quote 

the facts that we use from the theory of p-adic numbers and functions. An extensive 
treatment of this theory is given in Koblitz [6]. 
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Let p be a prime number, and A a nonsquare integer (positive or negative). We 
study the extension Qp(VA ) of the field of p-adic numbers Qp. Either VA E QGp, or 
Qp() = Qp + VAQ p. In the former case, Qp(VA) = Qp , and the p-adic order 
ordp(t) is well defined for any t E Qp(VA), as usual. In the latter case, it is defined 
as follows. Let t and (' be the roots of x2 + ax + b, a, b E QG. Then we define 

ordp(t) = ordp(t') = lordp(b). 

Notice that this formula is not necessarily true if V e QGp' 
On Qp(FA) there is a logarithmic function, denoted by logp. It is defined for all 

X e Qp(V) with ordp(X) = 0, as follows. Let k be the smallest positive integer 
such that t = Xk - 1 has ordp(t) > 2. Then 

logp(x) = klogp(1 + t) =1 (_- 42/2 + 43/3 - 44/4 + 

Notice that this series converges, and is useful for computing logp(t) to any desired 
degree of accuracy. Note that logp(x) e Qp(VA), logp(XlX2) = iogp(Xl) + 

logp(x2), and logp(Xk) = klogp(x) hold for all k E Z, X, X X2 Qp() 
Further, logp(x) = 0 if and only if X is a root of unity. 

Let X = 1 + t E Qp(VA) not be a root of unity, such that 

(3/2 if p = 2, 
(2.1) ordp( ) > 41 if p = 3, 

t1/2 if p > 5. 

Then 

(2.2) ordp(logp(x)) = ordp( ). 

Suppose that A Q Qp. Let a = a + bA, a, b eQp, and let 3=a - bVA be 
its conjugate. Then notice that logp(a) and logp(f3) are conjugates. Hence, 

(2.3) logp (a/f,) E VA7Q . 

Let k be the smallest positive integer such that 

a t k 1 + ()k-1 + 

with ordp(t) > 2. Then we can compute logp(a/f3) by the series 

(2.4) logp(a/f3) = k + /3 + 45/5 + ***) 

2B. Binary Recurrences. Let A, B, Go, G1 be given integers. Let the sequence 
{G }n0 be defined by 
(2.5) Gn+1 = AGn - BGn-i (n = 1,2,...). 

Let a, /3 be the roots of x2 - Ax + B. We assume that A = A2 - 4B is not a 
square, and that a/,8 is not a root of unity (i.e., the sequence is not degenerate). Put 
(2.6) G =G -GOP3 Goa -G1 

Then X and ,u are conjugates. It is well known that for all n > 0 

(2.7) Gn = XaOn + 8,fln. 
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Since our aim is to solve Eq. (1.1), we see from (2.5) that we may assume without 
loss of generality that (GO, G1) = (Gl, B) = (A, B) = 1. 

LEMMA 2.1. Let n, ml,..., m, be a solution of (1.1). Then, with the above 
assumptions, we have for i = 1, . . ., t: either mi = 0, or n = 0, or 
(2.8) ordp (a) = ordp (13) = 0, ordp (X) = ordp, (,u) = -4ordp (A) < 0. 

Proof. Suppose pi I B. Then pi + A, hence, from (2.5) and (B,G1) = 1, pi + G" for 
all n > 0. Thus, m, = 0 or n = 0. Next suppose pi + B. Then, by afB = B, 

ordp (a) + ordp (13) = ordp (B) = 0. 

Now, a and ,B are algebraic integers, so ordp (a) and ordp (13) are nonnegative. It 
follows that they are zero. 

Put E = -A,IlA. Note that E e Z, and for all n > 0 

Gn+1 -AGnGn+l + BG2 = EBn. 

Suppose that Pa I E; then we infer that pi + Gn for all n, since (GO, G1) = 1. Hence 

mi= 0. Next, suppose pi + E; then 

ordp (XVA7) + ordp, (V) = ordp (E) = 0. 

Since XVAI and juVA are algebraic integers (cf. (2.6)), the result follows. O 
From Lemma 2.1 it follows that we may assume without loss of generality that 

(2.8) holds for i = 1,..., t. Of course, we may also assume that ordp (w) = 0 for 
i = 1,..., t. The special case t = 0 in Eq. (1.1) is trivial if A > 0, and demands 
special treatment if A < 0. 

Finally, we prove a simple auxiliary lemma. 

LEMMA 2.2. Let a > 0, h > 1, b > (e2/h)h, and let x E - R be the largest solution 
of x = a + b(logx)h. Then, 

x < 2h(al/h + bl/hlog(hhb))h. 

Proof. By (z1 + z2)l1h < Zl/h + z/h we infer 

xl/* < al/h + c log(Xh/h) 

where c = hbl/h > e2. Put Xl/h = (1 + y)clogc; then y > 0. Now, 

(1 + y)clogc = Xl/h < al/h + clog(1 + y) + clogc + cloglogc 

< al/h + Cy + clogc + cloglogc, 

hence, 

yc(logc - 1) < al/h + cloglogc. 

It follows, by c > e2, that 

xl/h = clogc + yclogc < clogc + 
log c 

(a /h + cloglog c) 
logc - 1 

<2(al/h+clogc). 0 

3. Application of Schinzel's Theorem. In this section, A may be positive or 
negative. We quote a result of Schinzel [16] and apply it to (1.1). 

Let p be prime. Let D be the discriminant of Q(VA), t and X nonzero elements 
of Q(x ). Put X = {"/t', X = X"/X', where X', i", X', X" are algebraic integers. 
Put 

L = log max{ I eD 11/4, || 'X', || 1 (X" 1I, I("X' 1( Iv "x"'I 1 
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where II-yl is the maximal absolute value of the conjugates of Y. Let 4 be a prime 
ideal of Q(/A) with norm pP. Put 

x,= 2 , i=ord,p( p ) 
plogp' kod() 

THEOREM 3.1 (SCHINZEL). If t or X is a ,-adic unit and {n 0 xm, then 

ord ((n - Xm) < 106 7m-2L4p4p+4(logmax( m | In |) + OLpP + 2/L)3. 

We apply this to Eq. (1.1) as follows. Let nO > 2, and put 

L = logmax{ 'eD1/4, IaXVA, Iat/A fiXV I3tL} 

Let d be the squarefree part of /v. For i = 1, .. ., t, put 

0i=2 if pi Id,4i =1otherwise, 

pi = 2 if pi = 2, d 5 (mod8) orifpi>2, ()=-1, 

Pi = 1 otherwise, 

(3.1) Cl, = 106( p g1 ) kT3L4p4p,+4(1 + . P -1 2/L 
Pi log pi 

i 
~logno 

LEMMA 3.2. The solutions of (1.1) with n > nO satisfy 

mi < C1, (log n)3 (i = t). 

Proof. Rewrite (1.1), using (2.7), as 

(3.2) ($)fl _(iizk) = wf-npml ... pmt 

Then, by (2.8), 

m i - ordp, (X) = ordp( w -npin, ... pt) = ordp(( ) (ii1$ )) 

Put t" = a, V = /, X" = 4, X' = -X4i. Then, from Theorem 3.1 we find, using 
ord4 (x) = ordp (x), 

m, < 106 (p1g) <>3L4p4P+4 (log n + 1, Lp P + 2/L 

from which the result follows, since n > nO. ? 

Remark. Instead of Schinzel's result, we could have used Theorem 1 of van der 
Poorten [15]. Then we would have found ml < C1 log n. This is better in log n, and 
C1 has better asymptotic dependence on p, than C1,i. But for p, up to, say, 104, 
Schinzel's result is sharper. 

4. How to Solve (1.1). 
4A. Bounds for the Solutions. In this subsection, let A > 0. Note that lal 0 1131, 

since {GJ? ? is not degenerate. So we may assume lal > IflI Let C1 = 

max(C1,1 ... , Clt), m = max(ml,..., mt), and P = p ...pt 

The following theorem gives explicit upper bounds for the solutions of (1.1). We 
do not claim that this result is original or best possible. It just gives correct and 
rather small upper bounds. 
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THEOREM 4.1. Let A > 0 and Ial > 1/1, and let the assumptions of Subsection 2B 
hold. Let n 0 > max(2, log I A/X I/log I a/f l). Put 

y = IAX/W I _ I-AIW I I aY/P-no 

C2 = 1ogP/(01 a I + 
I 

min(O,log y)) 

C3 = max { 8C1 (log 27C1C2 )3, 841C1}. 

Then all solutions n, ml... .., m of (1.1) with n > nO satisfy 

logp Pi log y 
(4.1) n < m, mjgl a I 

Moreover, n < C2C3 and m < C3. 

Proof. Rewrite (1.1), using (2.7), as 

A+ 1 )= Pi Pt aO-n 

Note that y > 0, by the choice of no. It follows that 

Mjli ... M~~a > .y, Pi1 Pt |c 

and we infer (4.1) immediately. From (4.1) we obtain n < C2m. By Lemma 3.2 we 
now have 

m < C1(logn )3 < C1(logC2m)3. 

If C1C2 > (e2/3)3, we apply Lemma 2.2 with a = 0, b = C1C2, h = 3; then we find 
m < 8Cl(log 27C1C2)3. If C1C2 , (e2/3)3, then 

n < C2m < ClC2(logn )3 < (e 2/3)3 (log n)3, 

from which we deduce n < 12564. Now, m < C1(log n)3 < 841C1. E 
4B. Notations and Preliminary Lemmas. We introduce some notations. Until 

further notice, A may be positive or negative. Let for i = 1, .. ., t, 

ei= -ordp, (A), f, = ordp, (logp, ( a/: )), gi = fi - e1, 

0i = - logp, (-X/,u )/logp (a/fl). 

By (2.8), the pi-adic logarithms of a/fl and X/,u exist. Notice that logp (a/f/) # 0, 
since the sequence {Gn} is not degenerate. By (2.3), numerator and denominator of 
0, are both in AQ U, so Oi E QpI. Hence, if 0i # 0, we can write 

00 

i= E ili 

I=k, 

where ki = ordp (0k), and U, E {0, 1,., Pi - 1). 
The following, almost trivial lemma is at the heart of our reduction algorithm. It 

localizes the elements of { Gn } with many factors pi in terms of the pi-adic 
expansion of Oi. 
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LEMMA 4.2. Let n E Z, n >0 . If 

(3/2 if pi = 2, 

ordp,(Gn) + ei > 1I ifpi = 3, 

1/2 if pi > 5, 

then ordp,(Gn) = gi + ordp,(n -i). 

Proof. By (2.8) we have 

ord (Gn) + ei = ordp,(( ) -( A))= ordp,((+fl(3) ) 

With t = (-_/X)(a/,1)n - 1, condition (2.1) holds. Hence, from (2.2), 

ord (Gn)+ei=ord (n logp,()+ logp(t A)) 

= ordP,(n - 0) +?fl. C 

Before we give the algorithm, we have to exclude some trivial cases. 

LEMMA 4.3. If ordp (0i) < 0, then for the solutions of (1.1), 

mi < max(l,ordp (logp( (-/A/))) - ei. 

Proof. If mi > 3/2 - ei, we apply Lemma 4.2, and obtain 

mi = f, - ei + ordpi(n - Oi). 

Since n E Z and ordpi(0i) < 0, we have ordpi(n - 0j) = ordp (0i). Hence 

m= fi + ordp, (01) - ei = ordp; (logp, (-A/,u ))- e * 

Thus we may assume that ordp,(0) ,> 0 for i = 1,..., t. The reduction algorithm 
is based on the assumption that infinitely many pi-adic digits ui,1 of 0i are nonzero. 
We now show that if this is not the case, then Eq. (1.1) can be solved in an 
elementary way. From now on, A > 0. 

LEMMA 4.4. There are only finitely many pi-adic digits u ,1 of 0i nonzero if and only if 
there exists a nonnegative integer r such that Gn = ?Rn_r or Gn =? KSn r where 

= 1 or 2 and 

Rn= - S = aln + An 
a-fl 

Proof. By ordp,(0i) > 0 we have 0i = r for some rational integer r > 0. From the 
definition of 0i, 

logpi 
~ =0, 

hence (a/f3)r(-X/M) is a root of unity. Since A > 0, it is ? 1. Hence, Xa r =_ r 

and we infer 

(4.2) Gn = Xar(an-r ? fn-r). 

Suppose that a,B = + 1. Then 

= Xar(-r + /-r) = ?a pr(ar ? /r), 

= Xar(al-r + 1l-r) = +?Xr(arl ? + r-1 
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Notice that 

(ar-I + r-1 ,ar + 13) = (2,a + /3) = 1 or 2, 
and 

(ar-I - pr-i ar _ r) = a - /3 

By (GO,G1) = 1 it follows that +Xar = 1, 2 or 1/(a - 13), respectively, and the 
assertion follows. 

Suppose next that Ia1 I1> 1. Notice that 

G0B(a r-? + r-1) = G1(ar + 3r), 

where all factors are integers. Since (B, G1) = 1, we have a1I ar + ,Br. Suppose 
r > 0. Then it follows that (a, /3) ? 1, which contradicts (A, B) = 1. Hence r = 0, 
and the assertion follows from (4.2) and (GO, G1) = 1. ri 

Thus, in the situation of Lemma 4.4 we have to solve (1.1) for Rn and S, These 
recurrences enjoy the following divisibility properties, 

Rn Rm if and only if n Im, 
SnlSkn for odd k, 

ord2(Sn) < ord2(S3) for all n > 1. 

Ideas similar to those of St0rmer [18], Mahler [10], and Lehmer [7] can be employed 
to solve (1.1) using these properties. We do not work this out, but we confine 
ourselves to an illustrative example at the end of this section. It is also possible to 
derive elementary upper bounds in this case. Note that 0i = r holds for all i with the 
same r. Thus, by Lemma 4.2, 

m, < max(gi + ordp (n - r),1 - ej) < g, + 1 + ordp (n - r). 

Then we have, by (4.1), 

nlogla| < E (gi + 1)logpi-logy + logln-r-, 
i=i 

from which a good upper bound for n can be derived. 
So we assume in the sequel that infinitely many p,-adic digits of 0i are nonzero. 
4C. The Reduction Algorithm. Let all the above assumptions hold. Let N be a 

positive real number such that we are only interested in the solutions n, m1,..., ml 
of (1.1) with n < N. For example, take N = C2C3, as in Theorem 4.1. 

ALGORITHM A (reduces given upper bounds for the solutions of (1.1)). 
Input: a, /3, X, /L, w, Pl, ...* p, N 
Output: new, better upper bounds M, and N* for m, (i = 1, . . ., t) and n. 

(i) (initialization) Choose an nO > 0 such that no > logl,l/Xl/logla/,Bl; 
y := IX/wl - ,s/wI la/l- no; 

g,:= ordp (X) + ordp (logP (a//3)) 

(3/2 if pi 2 il t); 
h,:= ordp,(X)?+ 1 if pi=3 
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(ii) (computation of the AI's) Compute for i 1,...,t, using (2.4), the first r, 
pi-adic digits uj 1 of 

00 

0i = -logP (-X/1)/logP (a/:) = u,IPi 
1=0 

where ri is so large that p[ > NO and uI, r 0; 

(iii) (further initialization, start outer loop) si, := ri + 1 (i = 1,..., t); := 1; 

(iv) (start inner loop) i:= 1; K:= .false.; 

(v) (computation of the new bounds for mi) 
SiJ:= min{s E Z: s > 0 and psJ > Nj-l and ul5 s O}; 
if sj < s,j1thenK.:= .true.; 

(vi) (terminate inner loop) if i < t then i:= i + 1, goto (v); 

(vii) (computation of the new bound for n) 

Nj:= min{ N9J_, (ti=j1siJ_logpi - log g)/loglal}; 

(viii) (terminate outer loop) 
if NJ > n and K. thenj:= j + 1, goto (iv); 

else N* := max(Nj, no); 
M,l:= max(hl, g, + sf1) (i = 1, ..., 
stop. 

THEOREM 4.5. With the above assumptions, Algorithm A terminates. Equation (1.1) 
has no solutions withN* < n < N, mI > Ml (i = 1,...,t). 

Proof. Since the pl-adic expansion of 0i is assumed to be infinite, there exist r, 
with the required properties. It is clear that sI j < ri < sio, and that N. < NJ-1 So 
s, j < Si, - _ lholds for all j > 1. Since sj11 >O , there is a j such that NJ < n 0 or 
5, j = s5,j-1 for all i = 1, .. ., t. In the latter case, K. remains .false.; in both cases 
the algorithm terminates. 

We prove by induction on j that m, < g, ?s, (i = 1,. .., t) and n <NJ holds 
for all j. For j = 0, it is clear that n < No. Suppose n < Nj-1 for some j > 1. 
Suppose there exists an i such that m,I > gj + sij . From Lemma 4.2 we have 

ordp,(n-01)=m,-g, > s, +1, 

hence, by u1 ?s 0, 

n > + 0? uij p + ?+ ui S ps, i >p > N _1 

which contradicts our assumption. Thus, m, < g, + s (i = 1, ... , t). Then from 
(4.1), it follows that 

t 

n < ((g, + si 1)logp, - logy /logIaI| 

hence, n < NJ. El 
Remark 1. In general, one expects that ps j will not be much larger than N,, i.e., 

not too many consecutive pi-adic digits of 01 will be zero. Then NJ is about as large 
as log NJ_ 1 In practice, the algorithm will often terminate in three or four steps, near 
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to the largest solution. The computation time is polynomial in t, the bottleneck of 
the algorithm is the computation of the pi-adic logarithms. 

Remark 2. Petho [14] gives for t = 1 a different reduction algorithm. For a prime 

p, he computes the function g(u), defined for u E N as the smallest index n > 0 
such that Gn ? 0 and p' I Gn. Notice that if the pi-adic limit limu g(u) exists, 
then by Lemma 4.2 it is equal to 0i. 

Remark 3. If B = ?1, we can extend the sequence { Gn }I X to negative indices n 
as follows. For n < 0, we define 

Gn = Xa n + ,p3n = n(juaInj + X/3lnl) GE Z. 

We can solve Eq. (1.1) with n E Z not necessarily nonnegative, by applying 
Algorithm A twice: once for { Gn} ', and once for the sequence { Gn' } , defined 
by G' = G_ n Notice that 

I log?B (-a/X) - ?ogs(-4) = -., (i =(a/,) 

Now, instead of applying the algorithm twice, we can modify it, so that it works for 
all n E 7Z. 

Lemmas 3.2 and 4.2 remain correct if we replace n by lnl. In Theorem 4.1, the 
lower bound for n 0 must be replaced by 

n 0 > max(2, I logl It/A |/log I at/P8l log I X/j |/log I at/,l) 

and y has to be replaced by 

y = min(IX/wI -Itt/wl Ia/1 n0, l,/WI -I /wI I a//1 0). 

Similar modifications should be made in step (i) of Algorithm A. Further, in step 
(ii), r, should be chosen so large that 

if 
p, 

j 2 then p[ > N and u1 # 0, ui #p - 1; 

else p[-l > No and ui,r # Uir-l; 

and similar modifications have to be made in step (v). With these changes, Theorem 
4.5 remains true with n replaced by In l. 

4D. Examples. We give two examples, one of the reduction algorithm, and one 
example where the reduction algorithm fails, because 0A = 0. 

First Example. Let A = 6, B = 1, Go = 1, G1 = 4, w= 1, Pi = 2, P2 = 11. Then 

a = 3 + 2V2, / = 3 - 2V2, X = (1 + 2V2)/4V4, M = (-1 + 2V2)/4V4, and A = 

32. With n0 = e60 = 1.142... X>1026 we find from (3.1) that C1 < 2.49 x 1020. 

With the modifications of Subsection 4C we have in Theorem 4.1 y > 0.323, 
C2 < 1.76, C3 < 2.62 x 1026, C2C3 < 4.62 x 1026. Hence, all solutions of Gn = 
2mI11m2 satisfy Iln < 4.62 x 1026, M1, m2 < 2.62 x 1026. We perform the reduction 
algorithm step by step: 

(i) no=2,y>0.303, g1=0, g2=1, g>0.0275, h1=-1, 
h= , No = 4.62 x 1026. 
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(ii) o1 = 0.10111 10111 01000 11100 10100 01001 10001 10010 

00001 11101 01000 10000 01001 10011 10101 01101 

11100 01011 00001 11010 00011 01001 01010 00101 

10001 01011 00000 11001 01011 11101 10100 01011 

001.... * 

02 = O.A9359 05530 7330A 1A223 96230 3A006 A3366 83368 
8270.... ** 

so r, = 90 (since u1,89 = 1, u1l90 = 0, 289 > No), r2 = 29 

(since u229 = 6, 1129 > No) 

(iii) s1o0 = 91, S2,0 = 30; 

(V-Vii) 51 1 = 90, s21 = 29, K1 = .true., N1 < 76.9; 

(V-Vii) S1,2= 10, s2,2= 2, K2= .true., N2 < 8.7; 

(V-Vii) 51,3 = 6, s2,3 = 1, K3 = .true., N3 < 5.8; 

(V-Vii) S1,4 = 6, s2,4 = 1, K4 = .false., N4 < 5.8. 

Hence, jnj < 5, ml < 6, m2 < 2. We have 

n -5 -4 -3 -2 -1 0 1 2 3 4 5 

G,, 2174 373 64 11 2 1 4 23 134 781 4552 

So there are 5 solutions: with n = -3, -2, -1, 0, and 1. 

Second Example. Let A = 16, B = 1, Go= 1, G1 = 8, w = 1, P, = 2, P2= 

Then a = 8 + 3F7, 1B = 8 - 3F7, X = = 4, X/y = 1 is a root of unity, hence 

ol = 02 = 0. Notice that {Gn} is of type {Sn }. We have 

n -3 -2 -1 0 1 2 3 

G)7 2024 127 8 1 8 127 2024 

G,, (modl6) 8 -1 8 1 8 -1 8 

G,7 (modll) 0 6 8 1 8 6 0 

G,, (modll2) 88 6 8 1 8 6 88 

It follows that ord2(Gn) is 0 or 3, according as n is even or odd, and ordll(Gn) > 0 

if and only if n 3 (mod 6). Now, G3 I G3k for all odd k. Notice that 112 + G3, and 

G3 is not 11 times a power of 2. Hence, G3 has an odd prime divisor different from 

11, namely 23. It follows that 231Gn whenever IljGn. Thus m2 = 0, and there 

remain only three solutions: for n = -1, 0, and 1. 

We note that it is not difficult to prove that a similar argument applies whenever 

X/L = ? 1. 

5. The Generalized Ramanujan-Nagell Equation. The most interesting application 

of the reduction algorithm of the preceding section seems to be the solution of the 

generalized Ramanujan-Nagell equation (1.2). Let k be a nonzero integer, and 

P1,... , Pt distinct prime numbers. Then we ask for all nonnegative integers x, 

Z1, ... , zt with 

X 2+ k= pzl ..Pzt 

*We write the p-adic number 0 ulp1 as ? UOUlu2.... 
**A denotes 10. 
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First we note that zi = 0 whenever -k is a quadratic nonresidue (mod pi). Thus 
we assume that this is not the case for all i. Let pi I k for i = 1,... , s and pi + k for 
i-= s 1,...,t. Let ordp(k) be odd for i = ,...,r and even for i = r+ ,...,s. 
Dividing by large enough powers of pi (i = 1,... , s), (1.2) reduces to a finite 
number of equations 

(5.1) Dox2 + k1 =P r+1' ...t 

with p, + k1 (i = 1,... , t) and Do composed of Pl' ..., Pr only, and squarefree. We 
distinguish between the 2t-r combinations of z' odd or even (i = r + 1,..., t). 
Suppose that z' is odd for i = r + 1, .. ., u and even for i = u + 1, ..., t. Put 

(5 .2) y = p~;4i(z'l 1)/2 ... p(z- 1)/2pZ,+ 1/2 ... z'12; 

then, from (5.1), 

(5.3) D - Pr2 PuY2 = -k1. 

Put D = D0Pr+1 ... PU Then (5.2) and (5.3) lead to 

(5.4) v2 -Dw2 = k29 

with v = Pr+1 ... p*uy w = xl, k2 = kpr+l ... pu and also to 

(5.5) v2 Dw2 = k2 

W w Mr+r I . .. pMt 

with v = Dox1, w = y, k2 = -k1D0. We proceed with either (5.4) or (5.5), whichever 
is the most convenient (e.g., the one with the smaller 1k21). 

If D = 1, then (5.4) and (5.5) are trivial. So assume D > 1. Let - E Z + VDiZ be 
the smallest unit with - > 1 and N(c) = + 1. It is well known that the solutions v, w 
of v2 - Dw2 = k2 decompose into a finite number of classes of associated solutions. 
Let there be T classes, and choose in the Tth class (T = 1, .. ., T) the solution vT,0, 

wTo such that yT - vTO + wTO ?D > 1 is minimal. Then all solutions of v2 - Dw2 = 

k 2 are given by v = v, n w = _ w, n with 

(5.6) VT, n = YTn + T6 

- w = (y _ n y46)/2/D 

for n E Z, where y' = vT- wT O?. That is, { n }?n= and { w " are linear 
binary recurrence sequences. Now, (5.4) and (5.5) reduce to T equations of type 
(1.1). If k2 = 1, then -y = , yT = e-. If k2 1 2D, k2 k 1, then it is easy to prove that 

y 2 = Ik, _Y2 = Ik2I-1, so that 

v = k2 k /2((yITk2k 1/2) 2n+1 +( ylk -1/2)2n+1)/29 

= I k2 1/2((YI k2 -1/2) 2n+l1 - (yllk r1/2)2n+1) /2 . 
In both cases, (5.4) and (5.5) can be solved by elementary means (see the remarks 
following Lemma 4.4, and Mahler [10]). If k2 + 2D, then we apply the reduction 
algorithm to one of the equations Mr+ = P ...r Mt Mr r = P,m+'1 ... psM'. Notice 
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that n is allowed to be negative, so we can apply the modified algorithm (see 
Subsection 4C, Remark 3). 

Thus we have a procedure for solving (1.2). It is well known how the unit - and 
the minimal solutions v,O, wT0 (T = 1,..., T) can be computed by the continued 
fraction algorithm. 

We conclude this section with an example. 

THEOREM 5.1. The only nonnegative integers x such that X2 + 7 has no prime 
divisors larger than 20 are the 16 in the following table: 

x x2?+ 7 x x2 + 7 x x2+ 7 x x2 + 7 

0 7 5 32 = 25 13 176 = 24 x 11 53 2816 = 28 x 11 
1 8= 23 7 56 = 23 x 7 21 448 = 26x 7 75 5632 = 29 x 11 
2 11 9 88 = 23 x 11 31 968 = 23x 112 181 32768 = 215 
3 16 = 24 11 128 = 27 35 1232 = 24x 7 x 11 273 74536 = 23 x 7 x 113 

Sketch of Proof. Since -7 is a quadratic nonresidue modulo 3, 5, 13, 17, and 19, 

we have only the primes 2, 7, and 11 left. Only one factor 7 can occur, thus we have 
to solve the two equations 

(5.7) x2 + 7 = 2zll2 

(5.8) x2 + 7 = 7 x 2z'11Z2. 

Equation (5.8) can be solved in an elementary way. We distinguish four cases, each 
leading to an equation of the type 

y2- DZ2 = C 

with c l 2D, and either y or z composed of factors 2 and 11 only. We have 

(i) z1 even, z2 even, y - 2z//211z2/2, z = x/7, c = 1, D = 7; 

(ii) z1 odd, Z2 even, y - 2(z1+1)/211Z2/2, z = x/7, c = 2, D = 14; 

(iii) z1 even, Z2 odd, y = x, z = 2z1/211(Z2-1)/2, c = -7, D = 77; 

(iv) Z1 odd, Z2 odd, y = x, z = 2(z1-1)/211(z2-1)/2, c = -7, D = 154. 

In the second example of Subsection 4D we have worked out case (i). We leave the 
other cases to the reader. 

Equation (5.7) can be solved by the reduction algorithm. Again, we have four 
cases, each leading to an equation of the type 

y2- DZ2 = C 

with either y or z composed of factors 2 and 11 only. We have 

(i) z1 even, Z2 even, y = x, z = 2z1/211Z2/2, c = -7, D = 1; 

(ii) z1 odd, Z2 even, y = x, z = 2(z1-1)/211z2/2, c = -7, D = 2; 

(iii) z1 even, Z2 odd, y = x, z = 2z1/211(z2-1)/22 c = -7, D=11; 

(iv) Z1 odd, Z2 odd, y = x, z = 2(z1-1)/211(z2-1)/2, c = -7 D =22. 

Case (i) is trivial. The other three cases each lead to one equation of type (1.1). In the 
first example of Subsection 4D we have worked out case (ii). With the following data 
the reader should be able to perform Algorithm A by hand for the cases (iii) and (iv), 
thus completing the proof. It will be safe to take N < 1030. 
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Case (iii) a = 10 + 3V11, X = (2 + ViT)/2V1T, 

01 = 0.10011 01000 00110 10100 00110 10110 01001 11110 
11011 10010 00001 10110 10111 10100 00110 01101 
01010 10010 11101 11001 10000 10010 01010 11011 
00010 00111 01110 00101 01101 01111 10101 11110 
10.... 

02 = 0.23075 76425 39004 26090 A92A1 03757 07314 58414 
7A238.... 

Case (iv) a = 197 + 4222, X = (9 + 2V22)/2V-, 

01 = 0.11101 01101 01110 01010 10111 10001 00100 00011 
10000 00110 10101 01100 01101 01111 01101 10101 
01011 10100 01100 11101 10011 00011 00010 11110 
10101 01100 10011 11111 01001 01110 00000 01110 
011 .... 

02= 0.6A001 68184 22921 902A0 724A4 16769 45650 16482 
5A6AA .... 

Remark. Let 4( X, Y) aX2 + bXY + cy2 be a quadratic form with integral 
coefficients, and A - b2 4ac positive or negative. Let k be a nonzero integer, and 

Pi, . p, distinct prime numbers. Then we notice that 

4aF( X, Y) = (2aX + bY)2 _ Ay2, 

so that the diophantine equation 
(D (X, k) = pzl ... p,Zt 

in integers X # 0, zj,..., z, > 0, can be solved by our method. Also the equation 
?( X, pZI.. pt )k 

can be solved in this way. 
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